AT32UC3L0128 and L293D interfaced with bipolar (4-wire) stepper motors...
Sunday, November 30, 2014
Thursday, July 24, 2014
OpenCV Python: 2048 Game Solver
A sample application of Digit Recognition.
2048 solver algorithm based on term2048-AI
download: 2048opencv.py
demo video:
==================================
update:
Solving the Android version of 2048..
Android phone is running a VNC server (vnc server & viewer are both slow!).
python script: 2048opencv_adb.py
tip: send [touchscreen]swipe event through adb:
sources:
gabrielecirulli.github
diaryofatinker.blogspot
stackoverflow.com
2048 solver algorithm based on term2048-AI
import cv2 import numpy as np import win32api, win32gui, win32ui, win32con, win32com.client from PIL import Image, ImageFont, ImageDraw, ImageOps # create training model based on the given TTF font file # http://projectproto.blogspot.com/2014/07/opencv-python-digit-recognition.html def createDigitsModel(fontfile, digitheight): font = ImageFont.truetype(fontfile, digitheight) samples = np.empty((0,digitheight*(digitheight/2))) responses = [] for n in range(10): pil_im = Image.new("RGB", (digitheight, digitheight*2)) ImageDraw.Draw(pil_im).text((0, 0), str(n), font=font) pil_im = pil_im.crop(pil_im.getbbox()) pil_im = ImageOps.invert(pil_im) #pil_im.save(str(n) + ".png") # convert to cv image cv_image = cv2.cvtColor(np.array( pil_im ), cv2.COLOR_RGBA2BGRA) gray = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(gray,(5,5),0) thresh = cv2.adaptiveThreshold(blur,255,1,1,11,2) roi = cv2.resize(thresh,(digitheight,digitheight/2)) responses.append( n ) sample = roi.reshape((1,digitheight*(digitheight/2))) samples = np.append(samples,sample,0) samples = np.array(samples,np.float32) responses = np.array(responses,np.float32) model = cv2.KNearest() model.train(samples,responses) return model class Board(object): UP, DOWN, LEFT, RIGHT = 1, 2, 3, 4 FONT = "font/ClearSans-Bold.ttf" def __init__(self, clientwindowtitle): self.hwnd = self.getClientWindow(clientwindowtitle) if not self.hwnd: return self.hwndDC = win32gui.GetWindowDC(self.hwnd) self.mfcDC = win32ui.CreateDCFromHandle(self.hwndDC) self.saveDC = self.mfcDC.CreateCompatibleDC() self.cl, self.ct, right, bot = win32gui.GetClientRect(self.hwnd) self.cw, self.ch = right-self.cl, bot-self.ct self.cl += win32api.GetSystemMetrics(win32con.SM_CXSIZEFRAME) self.ct += win32api.GetSystemMetrics(win32con.SM_CYSIZEFRAME) self.ct += win32api.GetSystemMetrics(win32con.SM_CYCAPTION) self.ch += win32api.GetSystemMetrics(win32con.SM_CYSIZEFRAME)*2 self.saveBitMap = win32ui.CreateBitmap() self.saveBitMap.CreateCompatibleBitmap(self.mfcDC, self.cw, self.ch) self.saveDC.SelectObject(self.saveBitMap) self.tiles, self.tileheight, self.contour = self.findTiles(self.getClientFrame()) if not len(self.tiles): return self.digitheight = self.tileheight / 2 self.digitsmodel = createDigitsModel(self.FONT, self.digitheight) self.update() def getClientWindow(self, windowtitle): toplist, winlist = [], [] def enum_cb(hwnd, results): winlist.append((hwnd, win32gui.GetWindowText(hwnd))) win32gui.EnumWindows(enum_cb, toplist) window = [(hwnd, title) for hwnd, title in winlist if windowtitle.lower() in title.lower()] if not len(window): return 0 return window[0][0] def getClientFrame(self): self.saveDC.BitBlt((0, 0), (self.cw, self.ch), self.mfcDC, (self.cl, self.ct), win32con.SRCCOPY) bmpinfo = self.saveBitMap.GetInfo() bmpstr = self.saveBitMap.GetBitmapBits(True) pil_img = Image.frombuffer( 'RGB', (bmpinfo['bmWidth'], bmpinfo['bmHeight']), bmpstr, 'raw', 'BGRX', 0, 1) array = np.array( pil_img ) cvimage = cv2.cvtColor(array, cv2.COLOR_RGBA2BGRA) return cvimage def findTiles(self, cvframe): tiles, avgh = [], 0 gray = cv2.cvtColor(cvframe,cv2.COLOR_BGRA2GRAY) thresh = cv2.adaptiveThreshold(gray,255,1,1,11,2) contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) def findBoard(contours): # get largest square ww, sqcnt = 10, None for cnt in contours: x,y,w,h = cv2.boundingRect(cnt) if w>ww and abs(w-h)<w/10: ww = w sqcnt = cnt return sqcnt board = findBoard(contours) if board==None: print 'board not found!' return tiles, avgh, board bx,by,bw,bh = cv2.boundingRect(board) #cv2.rectangle(cvframe,(bx,by),(bx+bw,by+bh),(0,255,0),2) #cv2.imshow('board',cvframe) #cv2.waitKey(0) #cv2.destroyWindow( 'board' ) maxh = bh/4 minh = (maxh*4)/5 count = 0 for contour in contours: x,y,w,h = cv2.boundingRect(contour) if y>by and w>minh and w<maxh and h>minh and h<maxh: avgh += h count += 1 if not count: print 'no tile found!' return tiles, avgh, board avgh = avgh / count margin = (bh-avgh*4)/5 for row in range(4): for col in range(4): x0 = bx + avgh*col + margin*(col+1) x1 = x0 + avgh y0 = by + avgh*row + margin*(row+1) y1 = y0 + avgh tiles.append([x0, y0, x1, y1]) #cv2.rectangle(cvframe,(x0,y0),(x1,y1),(0,255,0),2) #cv2.imshow('tiles',cvframe) #cv2.waitKey(0) #cv2.destroyWindow( 'tiles' ) return tiles, avgh, board def getTileThreshold(self, tileimage): gray = cv2.cvtColor(tileimage,cv2.COLOR_BGR2GRAY) row, col = gray.shape tmp = gray.copy().reshape(1, row*col) counts = np.bincount(tmp[0]) sort = np.sort(counts) modes, freqs = [], [] for i in range(len(sort)): freq = sort[-1-i] if freq < 4: break mode = np.where(counts==freq)[0][0] modes.append(mode) freqs.append(freq) bg, fg = modes[0], modes[0] for i in range(len(modes)): fg = modes[i] #if abs(bg-fg)>=48: if abs(bg-fg)>32 and abs(fg-150)>4: # 150?! break #print bg, fg if bg>fg: # needs dark background ? tmp = 255 - tmp bg, fg = 255-bg, 255-fg tmp = tmp.reshape(row, col) ret, thresh = cv2.threshold(tmp,(bg+fg)/2,255,cv2.THRESH_BINARY) return thresh def getTileNumbers(self, cvframe): numbers = [] outframe = np.zeros(cvframe.shape,np.uint8) def guessNumber(digits): for i in range(1,16): nn = 2**i ss = str(nn) dd = [int(c) for c in ss] if set(digits) == set(dd): return nn return 0 for tile in self.tiles: x0,y0,x1,y1 = tile tileimage = cvframe[y0:y1,x0:x1] cv2.rectangle(cvframe,(x0,y0),(x1,y1),(0,255,0),2) cv2.rectangle(outframe,(x0,y0),(x1,y1),(0,255,0),1) thresh = self.getTileThreshold(tileimage) contours,hierarchy = cv2.findContours(thresh.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) dh = self.digitheight digits = [] for cnt in contours: x,y,w,h = cv2.boundingRect(cnt) if h>w and h>(dh*1)/5 and h<(dh*6)/5: cv2.rectangle(cvframe,(x0+x,y0+y),(x0+x+w,y0+y+h),(0,0,255),1) roi = thresh[y:y+h,x:x+w] roi = cv2.resize(roi,(dh,dh/2)) roi = roi.reshape((1,dh*(dh/2))) roi = np.float32(roi) retval, results, neigh_resp, dists = self.digitsmodel.find_nearest(roi, k=1) digit = int((results[0][0])) string = str(digit) digits.append(digit) cv2.putText(outframe,string,(x0+x,y0+y+h),0,float(h)/24,(0,255,0)) numbers.append(guessNumber(digits)) return numbers, outframe def getWindowHandle(self): return self.hwnd def getBoardContour(self): return self.contour def update(self): frame = self.getClientFrame() self.tilenumbers, outframe = self.getTileNumbers(frame) return self.tilenumbers, frame, outframe def copyTileNumbers(self): return self.tilenumbers[:] def getCell(self, tiles, x, y): return tiles[(y*4)+x] def setCell(self, tiles, x, y, v): tiles[(y*4)+x] = v return tiles def getCol(self, tiles, x): return [self.getCell(tiles, x, i) for i in range(4)] def setCol(self, tiles, x, col): for i in range(4): self.setCell(tiles, x, i, col[i]) return tiles def getLine(self, tiles, y): return [self.getCell(tiles, i, y) for i in range(4)] def setLine(self, tiles, y, line): for i in range(4): self.setCell(tiles, i, y, line[i]) return tiles def validMove(self, tilenumbers, direction): if direction == self.UP or direction == self.DOWN: for x in range(4): col = self.getCol(tilenumbers, x) for y in range(4): if(y < 4-1 and col[y] == col[y+1] and col[y]!=0): return True if(direction == self.DOWN and y > 0 and col[y] == 0 and col[y-1]!=0): return True if(direction == self.UP and y < 4-1 and col[y] == 0 and col[y+1]!=0): return True if direction == self.LEFT or direction == self.RIGHT: for y in range(4): line = self.getLine(tilenumbers, y) for x in range(4): if(x < 4-1 and line[x] == line[x+1] and line[x]!=0): return True if(direction == self.RIGHT and x > 0 and line[x] == 0 and line[x-1]!=0): return True if(direction == self.LEFT and x < 4-1 and line[x] == 0 and line[x+1]!=0): return True return False def moveTileNumbers(self, tilenumbers, direction): def collapseline(line, direction): if (direction==self.LEFT or direction==self.UP): inc = 1 rg = xrange(0, 4-1, inc) else: inc = -1 rg = xrange(4-1, 0, inc) pts = 0 for i in rg: if line[i] == 0: continue if line[i] == line[i+inc]: v = line[i]*2 line[i] = v line[i+inc] = 0 pts += v return line, pts def moveline(line, directsion): nl = [c for c in line if c != 0] if directsion==self.UP or directsion==self.LEFT: return nl + [0] * (4 - len(nl)) return [0] * (4 - len(nl)) + nl score = 0 if direction==self.LEFT or direction==self.RIGHT: for i in range(4): origin = self.getLine(tilenumbers, i) line = moveline(origin, direction) collapsed, pts = collapseline(line, direction) new = moveline(collapsed, direction) tilenumbers = self.setLine(tilenumbers, i, new) score += pts elif direction==self.UP or direction==self.DOWN: for i in range(4): origin = self.getCol(tilenumbers, i) line = moveline(origin, direction) collapsed, pts = collapseline(line, direction) new = moveline(collapsed, direction) tilenumbers = self.setCol(tilenumbers, i, new) score += pts return score, tilenumbers # AI based on "term2048-AI" # https://github.com/Nicola17/term2048-AI class AI(object): def __init__(self, board): self.board = board def nextMove(self): tilenumbers = self.board.copyTileNumbers() m, s = self.nextMoveRecur(tilenumbers[:],3,3) return m def nextMoveRecur(self, tilenumbers, depth, maxDepth, base=0.9): bestMove, bestScore = 0, -1 for m in range(1,5): if(self.board.validMove(tilenumbers, m)): score, newtiles = self.board.moveTileNumbers(tilenumbers[:], m) score, critical = self.evaluate(newtiles) newtiles = self.board.setCell(newtiles,critical[0],critical[1],2) if depth != 0: my_m,my_s = self.nextMoveRecur(newtiles[:],depth-1,maxDepth) score += my_s*pow(base,maxDepth-depth+1) if(score > bestScore): bestMove = m bestScore = score return bestMove, bestScore def evaluate(self, tilenumbers, commonRatio=0.25): maxVal = 0. criticalTile = (-1, -1) for i in range(8): linearWeightedVal = 0 invert = False if i<4 else True weight = 1. ctile = (-1,-1) cond = i%4 for y in range(4): for x in range(4): if cond==0: b_x = 4-1-x if invert else x b_y = y elif cond==1: b_x = x b_y = 4-1-y if invert else y elif cond==2: b_x = 4-1-x if invert else x b_y = 4-1-y elif cond==3: b_x = 4-1-x b_y = 4-1-y if invert else y currVal=self.board.getCell(tilenumbers,b_x,b_y) if(currVal == 0 and ctile == (-1,-1)): ctile = (b_x,b_y) linearWeightedVal += currVal*weight weight *= commonRatio invert = not invert if linearWeightedVal > maxVal: maxVal = linearWeightedVal criticalTile = ctile return maxVal, criticalTile def solveBoard(self, moveinterval=500): boardHWND = self.board.getWindowHandle() if not boardHWND: return False bx, by, bw, bh = cv2.boundingRect(self.board.getBoardContour()) x0, x1, y0, y1 = bx, bx+bw, by, by+bh win32gui.SetForegroundWindow(boardHWND) shell = win32com.client.Dispatch('WScript.Shell') print 'Set the focus to the Game Window, and the press this arrow key:' keymove = ['UP', 'DOWN', 'LEFT', 'RIGHT'] delay = moveinterval / 3 # milliseconds delay to cancel board animation effect prev_numbers = [] while True: numbers, inframe, outframe = self.board.update() if numbers != prev_numbers: cv2.waitKey(delay) numbers, inframe, outframe = self.board.update() if numbers == prev_numbers: # recheck if has changed continue prev_numbers = numbers move = ai.nextMove() if move: key = keymove[move-1] shell.SendKeys('{%s}'%key) print key cv2.waitKey(delay) cv2.imshow('CV copy',inframe[y0:y1,x0:x1]) cv2.imshow('CV out', outframe[y0:y1,x0:x1]) cv2.waitKey(delay) cv2.destroyWindow( 'CV copy' ) cv2.destroyWindow( 'CV out' ) # http://gabrielecirulli.github.io/2048/ # http://ov3y.github.io/2048-AI/ board = Board("2048 - Google Chrome") #board = Board("2048 - Mozilla Firefox") ai = AI(board) ai.solveBoard(360) print 'stopped.'
# open this site with Chrome: http://gabrielecirulli.github.io/2048/ board = Board("2048 - Google Chrome") ai = AI(board) ai.solveBoard()
demo video:
==================================
update:
Solving the Android version of 2048..
Android phone is running a VNC server (vnc server & viewer are both slow!).
python script: 2048opencv_adb.py
tip: send [touchscreen]swipe event through adb:
adb shell input swipe x1 y1 x2 y2
sources:
gabrielecirulli.github
diaryofatinker.blogspot
stackoverflow.com
Monday, July 21, 2014
OpenCV Python: Digit Recognition
Here's an example of OpenCV digit recognition with a given TrueType font (*.ttf) and digit height. It uses python PIL module to load digit glyphs. These glyphs (converted to CV images) are then used to train a K-Nearest model.
download: digitrecognition.py
sources:
opencvpython.blogspot.com
stackoverflow.com
import cv2 import numpy as np from PIL import Image, ImageFont, ImageDraw, ImageOps # create training model based on the given TTF font file def createDigitsModel(fontfile, digitheight): ttfont = ImageFont.truetype(fontfile, digitheight) samples = np.empty((0,digitheight*(digitheight/2))) responses = [] for n in range(10): pil_im = Image.new("RGB", (digitheight, digitheight*2)) ImageDraw.Draw(pil_im).text((0, 0), str(n), font=ttfont) pil_im = pil_im.crop(pil_im.getbbox()) pil_im = ImageOps.invert(pil_im) #pil_im.save(str(n) + ".png") # convert to cv image cv_image = cv2.cvtColor(np.array( pil_im ), cv2.COLOR_RGBA2BGRA) gray = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(gray,(5,5),0) thresh = cv2.adaptiveThreshold(blur,255,1,1,11,2) roi = cv2.resize(thresh,(digitheight,digitheight/2)) responses.append( n ) sample = roi.reshape((1,digitheight*(digitheight/2))) samples = np.append(samples,sample,0) samples = np.array(samples,np.float32) responses = np.array(responses,np.float32) model = cv2.KNearest() model.train(samples,responses) return model # digit recognition part def findDigits(imagefile, digitheight, fontfile="C:\\Windows\\Fonts\\Arial.ttf"): im = cv2.imread(imagefile) out = np.zeros(im.shape,np.uint8) gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) thresh = cv2.adaptiveThreshold(gray,255,1,1,11,2) contours,hierarchy = cv2.findContours(thresh.copy(),cv2.RETR_EXTERNAL ,cv2.CHAIN_APPROX_SIMPLE) model = createDigitsModel(fontfile, digitheight) for cnt in contours: x,y,w,h = cv2.boundingRect(cnt) if h>w and h>(digitheight*4)/5 and h<(digitheight*6)/5: #+/-20% cv2.rectangle(im,(x,y),(x+w,y+h),(0,255,0),1) roi = thresh[y:y+h,x:x+w] # crop roi = cv2.resize(roi,(digitheight,digitheight/2)) roi = roi.reshape((1,digitheight*(digitheight/2))) roi = np.float32(roi) retval, results, neigh_resp, dists = model.find_nearest(roi, k=1) string = str(int((results[0][0]))) #cv2.drawContours(out,[cnt],-1,(0,255,255),1) cv2.putText(out,string,(x,y+h),0,1,(0,255,0)) cv2.imshow('in',im) cv2.imshow('out',out) cv2.waitKey(0) cv2.destroyWindow( 'in' ) cv2.destroyWindow( 'out' ) findDigits('pi.png', 32) print 'done.'
sources:
opencvpython.blogspot.com
stackoverflow.com
Subscribe to:
Posts (Atom)